



# Peatland Ecosystem Mosaic

- Pocosin
- Swamp forest
- Pine flat
- Hardwood flat
- Riverine swamp forest
- Estuarine shrub/scrub
- Fresh marsh
- Brackish marsh





# Peatland Ecosystem Mosaic **Pocosin** Swamp forest

- Pine flat
- Hardwood flat
- Riverine swamp forest
- Estuarine shrub/scrub
- Fresh marsh
- Brackish marsh

Peat Depth (ft)







## Natural Problems

#### **Climate Change Factors**

- Sea-level rise
  - Habitat conversion
  - More open water
- Salt water intrusion
  - Habitat conversion
  - Stimulated peat decomposition
- Increased severity and frequency of storms
  - Erosion
  - Salt water intrusion



SLAMM Model (5) for Alligator River NWR 1 m eustatic sea-level rise by 2100



# More Natural Problems

**USDA Forest Service FORWARN Model** 



## **Catastrophic Wildfires**

- Pains Bay Fire (2011)
  - 45,294 acres
  - Lasted 120 days
  - Cost \$14,000,000
  - 5,529,088 tons of carbon lost to the atmosphere (Mickler)
- Similar-sized fires at Pocosin Lakes NWR and Great Dismal Swamp NWR



# Not-So-Natural Problems

- Ditches
  - Lowered water table
  - Peat oxidation
  - Subsidence
  - Salt water intrusion points
- Roads
  - Reduction of connectivity
  - Unintentional impounding

# Natural Solutions Coastal Adaption Approaches

#### 1. Restore hydrology

- a) Water control structures -> prevent salt water intrusion
- b) Ditch plugs -> reduce drainage, low DO plumes

#### 2. Construct oyster reefs

 a) Marl and shell bag reefs -> reduce erosion, provide habitat

#### 3. Vegetative plantings

a) Flood- and salt-tolerant species -> establish native tree species, eventually accrete biomass, provide habitat





# Point Peter Road Demonstration Site

Alligator River National Wildlife Refuge Point Peter Road Climate Change Project



## Point Peter Road Water Control Structure







# Salinity Upstream (Behind) of the Structure





## Summer of 2011: Fire & Rain





Average Salinity: 12 PSU (May-Aug)



Hurricane Irene: Late August 2011
Storm Surge

Average Salinity 5 PSU (Aug-Dec)



# Ditch Plugs

- Address daily wind-driven water movement
- Often complement oyster reefs
- Pre- and post-installation measurements
  - Salinity
  - Dissolved oxygen
- Promote surface sheet flow





# Assessment of Ditch Plugs





#### Alligator River National Wildlife Refuge Point Peter Road Climate Change Project



# **Oyster Reefs**



# Oyster Reef Measurements

- Shoreline erosion behind reef vs. control
- Marl vs. Shell bag
  - Oyster size
  - Oyster density
- Habitat for other organisms







# Oyster Reefs and Erosion at Point Peter Road Demo Site





No Reef: 4.2 m/yr

Established Reef: 1.7 m/yr

# Marl vs. Shell Bag Reefs

- Oyster size:
  - Marl > Shell bag
- Oyster density:
  - Shell bag > Marl
- Material Cost:
  - Marl ≈ Shell bag
- Time investment:
  - Shell bag > Marl











#### Alligator River National Wildlife Refuge Point Peter Road Climate Change Project



# Salt- and Flood-tolerant Vegetation

- Planting design
  - 40 acres
  - 11,500 bald cypress2,000 black gum6,750 pond pine
- Planted March 2010
- >90% transplant survival
- Hurricane Irene 2011





# **Bald Cypress Survival**



### **Lessons Learned:**

### 1. Restore hydrology

- a) Water control structures
  - Preliminary data suggest that it reduces salt water intrusion
  - Withstood two major storms (Irene and Sandy)
- b) Ditch plugs
  - Data suggest that they prevent salt water intrusion, help contain low DO water
  - Difficult to access (cost), may need reinforcement
  - Natural plugs (fallen trees, Phragmites australis)
- c) Permits
  - Long-term process





### 2. Construct oyster reefs

- a) Marl and shell bag reefs
  - Reduce erosion and provide habitat
  - Marl for large scale, time-sensitive projects
    - Size of marl, width of reef
  - Shell bag for volunteer involvement, outreach
  - Consider the best design/permit for the location, resources, and scale



#### 3. Vegetative plantings

- a) Flood- and salt-tolerant species
  - Plant diverse communities to address future environmental extremes
  - Collect hydrology data for the area and match wetland species

#### **Next Step:**

Economic valuation of ecosystem services preserved through adaptation approaches.







# Acknowledgments



- TNC
  - Chuck Peoples
  - Aaron McCall
  - Kate Murray
  - Brian Boutin
  - Becca Benner
  - Mike Horak
- US Fish & Wildlife Service
  - Mike Bryant
  - Scott Lanier
  - Dennis Stewart
  - Brian van Druten
- Volunteers
  - Kelly and Coleman Davis

#### Funding Kindly Provided By:

- Duke Energy
- TNC-NOAA Community-based Restoration Program
- SARP-NOAA Community-based
  - **Restoration Program**
- FAF-NOAA Community-basedRestoration Program
- Albemarle-Pamlico National EstuaryProgram
- Wildlife Conservation Society Wildlife Action Opportunities Fund
- Grady-White Boats
- Private donations





# Baldcypress Seedling Survival and Growth 2012

Protecting nature. Preserving life.\*



